Last updated: 2020-11-11

Checks: 7 0

Knit directory: neural_scRNAseq/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it's best to always run the code in an empty environment.

The command set.seed(20200522) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 6b07302. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    ._.DS_Store
    Ignored:    ._Rplots.pdf
    Ignored:    .__workflowr.yml
    Ignored:    ._neural_scRNAseq.Rproj
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/._.DS_Store
    Ignored:    analysis/._01-preprocessing.Rmd
    Ignored:    analysis/._01-preprocessing.html
    Ignored:    analysis/._02.1-SampleQC.Rmd
    Ignored:    analysis/._03-filtering.Rmd
    Ignored:    analysis/._04-clustering.Rmd
    Ignored:    analysis/._04-clustering.knit.md
    Ignored:    analysis/._04.1-cell_cycle.Rmd
    Ignored:    analysis/._05-annotation.Rmd
    Ignored:    analysis/._Lam-0-NSC_no_integration.Rmd
    Ignored:    analysis/._Lam-01-NSC_integration.Rmd
    Ignored:    analysis/._Lam-02-NSC_annotation.Rmd
    Ignored:    analysis/._NSC-1-clustering.Rmd
    Ignored:    analysis/._NSC-2-annotation.Rmd
    Ignored:    analysis/.__site.yml
    Ignored:    analysis/._additional_filtering.Rmd
    Ignored:    analysis/._additional_filtering_clustering.Rmd
    Ignored:    analysis/._index.Rmd
    Ignored:    analysis/._organoid-01-1-qualtiy-control.Rmd
    Ignored:    analysis/._organoid-01-clustering.Rmd
    Ignored:    analysis/._organoid-02-integration.Rmd
    Ignored:    analysis/._organoid-03-cluster_analysis.Rmd
    Ignored:    analysis/._organoid-04-group_integration.Rmd
    Ignored:    analysis/._organoid-04-stage_integration.Rmd
    Ignored:    analysis/._organoid-05-group_integration_cluster_analysis.Rmd
    Ignored:    analysis/._organoid-05-stage_integration_cluster_analysis.Rmd
    Ignored:    analysis/._organoid-06-1-prepare-sce.Rmd
    Ignored:    analysis/._organoid-06-conos-analysis-Seurat.Rmd
    Ignored:    analysis/._organoid-06-conos-analysis-function.Rmd
    Ignored:    analysis/._organoid-06-conos-analysis.Rmd
    Ignored:    analysis/._organoid-06-group-integration-conos-analysis.Rmd
    Ignored:    analysis/._organoid-07-conos-visualization.Rmd
    Ignored:    analysis/._organoid-07-group-integration-conos-visualization.Rmd
    Ignored:    analysis/._organoid-08-conos-comparison.Rmd
    Ignored:    analysis/._organoid-0x-sample_integration.Rmd
    Ignored:    analysis/01-preprocessing_cache/
    Ignored:    analysis/02-1-SampleQC_cache/
    Ignored:    analysis/02-quality_control_cache/
    Ignored:    analysis/02.1-SampleQC_cache/
    Ignored:    analysis/03-filtering_cache/
    Ignored:    analysis/04-clustering_cache/
    Ignored:    analysis/04.1-cell_cycle_cache/
    Ignored:    analysis/05-annotation_cache/
    Ignored:    analysis/06-clustering-all-timepoints_cache/
    Ignored:    analysis/07-cluster-analysis-all-timepoints_cache/
    Ignored:    analysis/Lam-01-NSC_integration_cache/
    Ignored:    analysis/Lam-02-NSC_annotation_cache/
    Ignored:    analysis/NSC-1-clustering_cache/
    Ignored:    analysis/NSC-2-annotation_cache/
    Ignored:    analysis/TDP-01-preprocessing_cache/
    Ignored:    analysis/TDP-02-quality_control_cache/
    Ignored:    analysis/TDP-03-filtering_cache/
    Ignored:    analysis/TDP-04-clustering_cache/
    Ignored:    analysis/TDP-05-plasmid_expression_cache/
    Ignored:    analysis/TDP-06-cluster_analysis_cache/
    Ignored:    analysis/additional_filtering_cache/
    Ignored:    analysis/additional_filtering_clustering_cache/
    Ignored:    analysis/organoid-01-1-qualtiy-control_cache/
    Ignored:    analysis/organoid-01-clustering_cache/
    Ignored:    analysis/organoid-02-integration_cache/
    Ignored:    analysis/organoid-03-cluster_analysis_cache/
    Ignored:    analysis/organoid-04-group_integration_cache/
    Ignored:    analysis/organoid-04-stage_integration_cache/
    Ignored:    analysis/organoid-05-group_integration_cluster_analysis_cache/
    Ignored:    analysis/organoid-05-stage_integration_cluster_analysis_cache/
    Ignored:    analysis/organoid-06-conos-analysis_cache/
    Ignored:    analysis/organoid-06-conos-analysis_test_cache/
    Ignored:    analysis/organoid-06-group-integration-conos-analysis_cache/
    Ignored:    analysis/organoid-07-conos-visualization_cache/
    Ignored:    analysis/organoid-07-group-integration-conos-visualization_cache/
    Ignored:    analysis/organoid-08-conos-comparison_cache/
    Ignored:    analysis/organoid-0x-sample_integration_cache/
    Ignored:    analysis/sample5_QC_cache/
    Ignored:    analysis/timepoints-01-organoid-integration_cache/
    Ignored:    data/.DS_Store
    Ignored:    data/._.DS_Store
    Ignored:    data/._.smbdeleteAAA17ed8b4b
    Ignored:    data/._Lam_figure2_markers.R
    Ignored:    data/._Reactive_astrocytes_markers.xlsx
    Ignored:    data/._known_NSC_markers.R
    Ignored:    data/._known_cell_type_markers.R
    Ignored:    data/._metadata.csv
    Ignored:    data/._reactive_astrocyte_markers.R
    Ignored:    data/._~$Reactive_astrocytes_markers.xlsx
    Ignored:    data/data_sushi/
    Ignored:    data/filtered_feature_matrices/
    Ignored:    output/.DS_Store
    Ignored:    output/._.DS_Store
    Ignored:    output/._NSC_cluster1_marker_genes.txt
    Ignored:    output/._organoid_integration_cluster1_marker_genes.txt
    Ignored:    output/Lam-01-clustering.rds
    Ignored:    output/NSC_1_clustering.rds
    Ignored:    output/NSC_cluster1_marker_genes.txt
    Ignored:    output/NSC_cluster2_marker_genes.txt
    Ignored:    output/NSC_cluster3_marker_genes.txt
    Ignored:    output/NSC_cluster4_marker_genes.txt
    Ignored:    output/NSC_cluster5_marker_genes.txt
    Ignored:    output/NSC_cluster6_marker_genes.txt
    Ignored:    output/NSC_cluster7_marker_genes.txt
    Ignored:    output/additional_filtering.rds
    Ignored:    output/conos/
    Ignored:    output/conos_organoid-06-conos-analysis.rds
    Ignored:    output/conos_organoid-06-group-integration-conos-analysis.rds
    Ignored:    output/figures/
    Ignored:    output/organoid_integration_cluster10_marker_genes.txt
    Ignored:    output/organoid_integration_cluster11_marker_genes.txt
    Ignored:    output/organoid_integration_cluster12_marker_genes.txt
    Ignored:    output/organoid_integration_cluster13_marker_genes.txt
    Ignored:    output/organoid_integration_cluster14_marker_genes.txt
    Ignored:    output/organoid_integration_cluster15_marker_genes.txt
    Ignored:    output/organoid_integration_cluster16_marker_genes.txt
    Ignored:    output/organoid_integration_cluster17_marker_genes.txt
    Ignored:    output/organoid_integration_cluster1_marker_genes.txt
    Ignored:    output/organoid_integration_cluster2_marker_genes.txt
    Ignored:    output/organoid_integration_cluster3_marker_genes.txt
    Ignored:    output/organoid_integration_cluster4_marker_genes.txt
    Ignored:    output/organoid_integration_cluster5_marker_genes.txt
    Ignored:    output/organoid_integration_cluster6_marker_genes.txt
    Ignored:    output/organoid_integration_cluster7_marker_genes.txt
    Ignored:    output/organoid_integration_cluster8_marker_genes.txt
    Ignored:    output/organoid_integration_cluster9_marker_genes.txt
    Ignored:    output/sce_01_preprocessing.rds
    Ignored:    output/sce_02_quality_control.rds
    Ignored:    output/sce_03_filtering.rds
    Ignored:    output/sce_03_filtering_all_genes.rds
    Ignored:    output/sce_06-1-prepare-sce.rds
    Ignored:    output/sce_TDP_01_preprocessing.rds
    Ignored:    output/sce_TDP_02_quality_control.rds
    Ignored:    output/sce_TDP_03_filtering.rds
    Ignored:    output/sce_TDP_03_filtering_all_genes.rds
    Ignored:    output/sce_organoid-01-clustering.rds
    Ignored:    output/sce_preprocessing.rds
    Ignored:    output/so_04-group_integration.rds
    Ignored:    output/so_04-stage_integration.rds
    Ignored:    output/so_04_1_cell_cycle.rds
    Ignored:    output/so_04_clustering.rds
    Ignored:    output/so_06-clustering_all_timepoints.rds
    Ignored:    output/so_0x-sample_integration.rds
    Ignored:    output/so_TDP_04_clustering.rds
    Ignored:    output/so_TDP_05_plasmid_expression.rds
    Ignored:    output/so_additional_filtering_clustering.rds
    Ignored:    output/so_integrated_organoid-02-integration.rds
    Ignored:    output/so_merged_organoid-02-integration.rds
    Ignored:    output/so_organoid-01-clustering.rds
    Ignored:    output/so_sample_organoid-01-clustering.rds
    Ignored:    scripts/._bu_Rcode.R
    Ignored:    scripts/._plasmid_expression.sh
    Ignored:    scripts/._prepare_salmon_transcripts.R

Untracked files:
    Untracked:  Rplots.pdf
    Untracked:  analysis/Lam-0-NSC_no_integration.Rmd
    Untracked:  analysis/additional_filtering.Rmd
    Untracked:  analysis/additional_filtering_clustering.Rmd
    Untracked:  analysis/organoid-01-1-qualtiy-control.Rmd
    Untracked:  analysis/organoid-06-conos-analysis-Seurat.Rmd
    Untracked:  analysis/organoid-06-conos-analysis-function.Rmd
    Untracked:  analysis/organoid-07-conos-visualization.Rmd
    Untracked:  analysis/organoid-07-group-integration-conos-visualization.Rmd
    Untracked:  analysis/organoid-08-conos-comparison.Rmd
    Untracked:  analysis/organoid-0x-sample_integration.Rmd
    Untracked:  analysis/sample5_QC.Rmd
    Untracked:  data/Homo_sapiens.GRCh38.98.sorted.gtf
    Untracked:  data/Kanton_et_al/
    Untracked:  data/Lam_et_al/
    Untracked:  data/Sep2020/
    Untracked:  data/reference/
    Untracked:  data/~$Reactive_astrocytes_markers.xlsx
    Untracked:  scripts/bu_Rcode.R
    Untracked:  scripts/salmon-latest_linux_x86_64/

Unstaged changes:
    Modified:   analysis/05-annotation.Rmd
    Modified:   analysis/Lam-02-NSC_annotation.Rmd
    Modified:   analysis/TDP-04-clustering.Rmd
    Modified:   analysis/TDP-05-plasmid_expression.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/organoid-02-integration.Rmd
    Modified:   analysis/organoid-04-group_integration.Rmd
    Modified:   analysis/organoid-06-conos-analysis.Rmd
    Modified:   analysis/timepoints-01-organoid-integration.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/TDP-05-00-filtering-plasmid-QC.Rmd) and HTML (docs/TDP-05-00-filtering-plasmid-QC.html) files. If you've configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 6b07302 khembach 2020-11-11 fix cell barcode matching
html 49397d8 khembach 2020-11-11 Build site.
Rmd f627bf7 khembach 2020-11-11 use correct alevin counts
html 80e0ebe khembach 2020-10-15 Build site.
Rmd 6d7e3c3 khembach 2020-10-15 TDP-43-HA expression in filtered cells

Load packages

library(cowplot)
library(ggplot2)
library(Seurat)
library(SingleCellExperiment)
library(tximport)
library(scater)
library(LSD)
library(dplyr)
library(ggridges)

Load data

We combine the quantification of the plasmid transcript and the endogenous TDP-43 with the CellRanger count matrix.

sce <- readRDS(file.path("output", "sce_TDP_02_quality_control.rds"))
## we only keep the four samples of the TDP-43 experiment
sample_ids <- c("TDP4wOFF", "TDP2wON", "TDP4wONa", "TDP4wONb")
sce <- sce[,colData(sce)$sample_id %in% sample_ids]
sce$sample_id <- droplevels(sce$sample_id)
samples <- c("no1_Neural_cuture_d_96_TDP-43-HA_4w_DOXoff", 
             "no2_Neural_cuture_d_96_TDP-43-HA_2w_DOXON",
             "no3_Neural_cuture_d_96_TDP-43-HA_4w_DOXONa",
             "no4_Neural_cuture_d_96_TDP-43-HA_4w_DOXONb")
txi <- matrix(NA, nrow = 2)
for (i in 1:4) {
  fi <- file.path("data", "Sep2020", "alevin_TDP43", samples[i], 
                     "alevin/quants_mat.gz")

  # import alevin quants
  a <- tximport(fi, type="alevin")$counts
  
  ## match the alevin and CellRanger cell IDs
  colnames(a) <- paste0(colnames(a), "-1.", sample_ids[i])
  txi <- cbind(txi, a)
}
txi <- txi[,colnames(txi) != ""]
rownames(txi) <- c("ENSG00000120948.TARDBP-alevin", "TDP43-HA")

We add the alevin counts to the CellRanger matrix.

## add two new rows to counts matrix and replace the counts for matching 
## barcodes with the alevin counts
counts <- rbind(counts(sce), DelayedArray(matrix(0, nrow = 2, 
                                                 ncol = ncol(counts(sce)))))
rownames(counts) <- c(rownames(sce), rownames(txi))
## match the barcodes
colnames(txi) %in% colnames(sce) %>% table
.
FALSE  TRUE 
 2667  9719 
m <- match(colnames(txi), colnames(sce))
counts[rownames(txi),m[!is.na(m)]] <- txi[,which(!is.na(m))]

# adjust rowData
rd <- rbind(rowData(sce), data.frame(ensembl_id = c("ENSG00000120948", ""), 
                                     symbol = c("TARDBP_alevin", "TDP43-HA")))
rownames(rd) <- rownames(counts)

sce <- SingleCellExperiment(list(counts=counts),
                            colData = colData(sce),
                            rowData = rd)

Identification of outlier cells

Based on the QC metrics, we now identify outlier cells:

cols <- c("sum", "detected", "subsets_Mt_percent")
log <- c(TRUE, TRUE, FALSE)
type <- c("both", "both", "higher")

drop_cols <- paste0(cols, "_drop")
for (i in seq_along(cols))
    colData(sce)[[drop_cols[i]]] <- isOutlier(sce[[cols[i]]], 
        nmads = 3, type = type[i], log = log[i], batch = sce$sample_id)

# Overlap of outlier cells from two metrics
sapply(drop_cols, function(i) 
    sapply(drop_cols, function(j)
        sum(sce[[i]] & sce[[j]])))
                        sum_drop detected_drop subsets_Mt_percent_drop
sum_drop                    3644          3644                     221
detected_drop               3644          7701                     686
subsets_Mt_percent_drop      221           686                    2849
colData(sce)$discard <- rowSums(data.frame(colData(sce)[,drop_cols])) > 0
table(colData(sce)$discard)

FALSE  TRUE 
36281  9864 
## Plot the metrics and highlight the discarded cells
plotColData(sce, x = "sample_id", y = "sum", colour_by = "discard") + 
  scale_y_log10()

Version Author Date
80e0ebe khembach 2020-10-15
plotColData(sce, x = "sample_id", y = "detected", colour_by = "discard") + 
  scale_y_log10()

Version Author Date
80e0ebe khembach 2020-10-15
plotColData(sce, x = "sample_id", y = "subsets_Mt_percent", 
            colour_by = "discard")

Version Author Date
80e0ebe khembach 2020-10-15

We decided to additionally filter the cells in the TDP experiment samples. We use the same cutoffs as for the 96 days old neural cultures from the first experiment. We also remove the cell population with low number of UMIs and detected genes from the old neural cultures (223 days).

## filter the cells with less than 5000 UMIs in the TDP experiment samples
tdp_samples <- c("TDP2wON", "TDP4wOFF", "TDP4wONa", "TDP4wONb")
colData(sce)$manual_discard_sum <- colData(sce)$sum < 5000 & 
  colData(sce)$sample_id %in% tdp_samples
## filter the cells with less than 2500 detected genes
colData(sce)$manual_discard_detected <- colData(sce)$detected < 2500 & 
  colData(sce)$sample_id %in% tdp_samples

## highlight all manually discarded cells
colData(sce)$manual_discard <- colData(sce)$manual_discard_sum |
                                   colData(sce)$manual_discard_detected
plotColData(sce, x = "sample_id", y = "sum", colour_by = "manual_discard") + 
  scale_y_log10()

Version Author Date
80e0ebe khembach 2020-10-15
plotColData(sce, x = "sample_id", y = "detected", colour_by = "manual_discard") + 
  scale_y_log10()

Version Author Date
80e0ebe khembach 2020-10-15
## highlight all discarded cells
colData(sce)$discard <- colData(sce)$manual_discard |
                                   colData(sce)$discard
plotColData(sce, x = "sample_id", y = "detected", colour_by = "discard") + 
  scale_y_log10()

Version Author Date
80e0ebe khembach 2020-10-15
plotColData(sce, x = "sample_id", y = "sum", colour_by = "discard") + 
  scale_y_log10()

Version Author Date
80e0ebe khembach 2020-10-15
plotColData(sce, x = "sample_id", y = "subsets_Mt_percent", 
            colour_by = "discard")

Version Author Date
80e0ebe khembach 2020-10-15

TDP-43 expression per cell.

gene_ids <- c("ENSG00000120948.TARDBP", "ENSG00000120948.TARDBP-alevin", 
              "TDP43-HA")

plotExpression(sce, gene_ids,
               x = "sample_id", exprs_values = "counts", 
               colour = "discard")

Version Author Date
49397d8 khembach 2020-11-11
80e0ebe khembach 2020-10-15
plotExpression(sce, gene_ids,
               x = "discard", exprs_values = "counts", 
               colour = "sample_id")

Version Author Date
49397d8 khembach 2020-11-11
80e0ebe khembach 2020-10-15

Ridge plot

Do the filtered cells express TDP-43 and TDP-43-HA?

df <- colData(sce) %>% as.data.frame() %>%
  dplyr::select(sample_id, discard, detected, sum, subsets_Mt_detected, 
                discard) %>%
  dplyr::mutate(TARDBP = as.vector(counts(sce["ENSG00000120948.TARDBP"])),
                TARDBP_alevin = as.vector(counts(sce["ENSG00000120948.TARDBP-alevin"])),
                TDP43_HA = as.vector(counts(sce["TDP43-HA"]))) 

for (g in c("TARDBP", "TARDBP_alevin", "TDP43_HA")){
  cat("#### ", g, "\n")
  p <- df %>%
    ggplot(aes(x = get(g), y = sample_id, fill = discard)) +
    geom_density_ridges(panel_scaling = FALSE, show.legend = TRUE, 
                        alpha = 0.5, color = "white", scale = 0.95, 
                        rel_min_height = 0.01) +
    # facet_wrap(~group_id, nrow = 1) + 
    theme_ridges(center_axis_labels = TRUE) + 
    scale_x_continuous(expand = c(0, 0)) + 
    xlab(g) + ggtitle("all cells")
  print(p)
  
  ## number of cells with gene count > 0
  cat("cells with gene count > 0")
  print(table(df$sample_id, df[,g] > 0))
  ## retained cells with gene count > 0
  df1 <- df %>%  dplyr::filter(get(g) > 0)
  cat("discarded cells with gene count > 0")
  print(table(df1$sample_id, df1$discard))
  
   p <- df1 %>%
    ggplot(aes(x = get(g), y = sample_id, fill = discard)) +
    geom_density_ridges(panel_scaling = FALSE, show.legend = TRUE, 
                        alpha = 0.5, color = "white", scale = 0.95, 
                        rel_min_height = 0.01) +
    # facet_wrap(~group_id, nrow = 1) + 
    theme_ridges(center_axis_labels = TRUE) + 
    scale_x_continuous(expand = c(0, 0)) + 
    xlab(g) + ggtitle(paste0("cells with ", g, " count > 0"))

  print(p)
}
####  TARDBP 

Version Author Date
80e0ebe khembach 2020-10-15
cells with gene count > 0          
           FALSE  TRUE
  TDP2wON   7938  3092
  TDP4wOFF  6233  2525
  TDP4wONa 10545  3567
  TDP4wONb  8793  3452
discarded cells with gene count > 0          
           FALSE TRUE
  TDP2wON   2899  193
  TDP4wOFF  2362  163
  TDP4wONa  3295  272
  TDP4wONb  3214  238

Version Author Date
80e0ebe khembach 2020-10-15
####  TARDBP_alevin 

Version Author Date
49397d8 khembach 2020-11-11
80e0ebe khembach 2020-10-15
cells with gene count > 0          
           FALSE  TRUE
  TDP2wON   8884  2146
  TDP4wOFF  6973  1785
  TDP4wONa 11714  2398
  TDP4wONb  9850  2395
discarded cells with gene count > 0          
           FALSE TRUE
  TDP2wON   2008  138
  TDP4wOFF  1667  118
  TDP4wONa  2230  168
  TDP4wONb  2233  162

Version Author Date
49397d8 khembach 2020-11-11
80e0ebe khembach 2020-10-15
####  TDP43_HA 

Version Author Date
49397d8 khembach 2020-11-11
80e0ebe khembach 2020-10-15
cells with gene count > 0          
           FALSE  TRUE
  TDP2wON   9537  1493
  TDP4wOFF  7596  1162
  TDP4wONa 12484  1628
  TDP4wONb 10722  1523
discarded cells with gene count > 0          
           FALSE TRUE
  TDP2wON   1305  188
  TDP4wOFF  1071   91
  TDP4wONa  1484  144
  TDP4wONb  1370  153

Version Author Date
49397d8 khembach 2020-11-11
80e0ebe khembach 2020-10-15

sessionInfo()
R version 4.0.0 (2020-04-24)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.6 LTS

Matrix products: default
BLAS:   /usr/local/R/R-4.0.0/lib/libRblas.so
LAPACK: /usr/local/R/R-4.0.0/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] HDF5Array_1.16.1            rhdf5_2.32.2               
 [3] ggridges_0.5.2              dplyr_1.0.2                
 [5] LSD_4.1-0                   scater_1.16.2              
 [7] tximport_1.16.1             SingleCellExperiment_1.10.1
 [9] SummarizedExperiment_1.18.1 DelayedArray_0.14.0        
[11] matrixStats_0.56.0          Biobase_2.48.0             
[13] GenomicRanges_1.40.0        GenomeInfoDb_1.24.2        
[15] IRanges_2.22.2              S4Vectors_0.26.1           
[17] BiocGenerics_0.34.0         Seurat_3.1.5               
[19] ggplot2_3.3.2               cowplot_1.0.0              
[21] workflowr_1.6.2            

loaded via a namespace (and not attached):
  [1] Rtsne_0.15                ggbeeswarm_0.6.0         
  [3] colorspace_1.4-1          ellipsis_0.3.1           
  [5] rprojroot_1.3-2           XVector_0.28.0           
  [7] BiocNeighbors_1.6.0       fs_1.4.2                 
  [9] farver_2.0.3              leiden_0.3.3             
 [11] listenv_0.8.0             ggrepel_0.8.2            
 [13] codetools_0.2-16          splines_4.0.0            
 [15] knitr_1.29                jsonlite_1.7.0           
 [17] ica_1.0-2                 cluster_2.1.0            
 [19] png_0.1-7                 uwot_0.1.8               
 [21] sctransform_0.2.1         compiler_4.0.0           
 [23] httr_1.4.1                backports_1.1.9          
 [25] Matrix_1.2-18             lazyeval_0.2.2           
 [27] later_1.1.0.1             BiocSingular_1.4.0       
 [29] htmltools_0.5.0           tools_4.0.0              
 [31] rsvd_1.0.3                igraph_1.2.5             
 [33] gtable_0.3.0              glue_1.4.2               
 [35] GenomeInfoDbData_1.2.3    RANN_2.6.1               
 [37] reshape2_1.4.4            rappdirs_0.3.1           
 [39] Rcpp_1.0.5                vctrs_0.3.4              
 [41] ape_5.4                   nlme_3.1-148             
 [43] DelayedMatrixStats_1.10.1 lmtest_0.9-37            
 [45] xfun_0.15                 stringr_1.4.0            
 [47] globals_0.12.5            lifecycle_0.2.0          
 [49] irlba_2.3.3               future_1.17.0            
 [51] MASS_7.3-51.6             zlibbioc_1.34.0          
 [53] zoo_1.8-8                 scales_1.1.1             
 [55] promises_1.1.1            RColorBrewer_1.1-2       
 [57] yaml_2.2.1                reticulate_1.16          
 [59] pbapply_1.4-2             gridExtra_2.3            
 [61] stringi_1.4.6             BiocParallel_1.22.0      
 [63] rlang_0.4.7               pkgconfig_2.0.3          
 [65] bitops_1.0-6              evaluate_0.14            
 [67] lattice_0.20-41           Rhdf5lib_1.10.0          
 [69] ROCR_1.0-11               purrr_0.3.4              
 [71] labeling_0.3              patchwork_1.0.1          
 [73] htmlwidgets_1.5.1         tidyselect_1.1.0         
 [75] RcppAnnoy_0.0.16          plyr_1.8.6               
 [77] magrittr_1.5              R6_2.4.1                 
 [79] generics_0.0.2            pillar_1.4.6             
 [81] whisker_0.4               withr_2.2.0              
 [83] fitdistrplus_1.1-1        survival_3.2-3           
 [85] RCurl_1.98-1.2            tibble_3.0.3             
 [87] future.apply_1.6.0        tsne_0.1-3               
 [89] crayon_1.3.4              KernSmooth_2.23-17       
 [91] plotly_4.9.2.1            rmarkdown_2.3            
 [93] viridis_0.5.1             grid_4.0.0               
 [95] data.table_1.12.8         git2r_0.27.1             
 [97] digest_0.6.25             tidyr_1.1.0              
 [99] httpuv_1.5.4              munsell_0.5.0            
[101] beeswarm_0.2.3            viridisLite_0.3.0        
[103] vipor_0.4.5