Last updated: 2021-05-17

Checks: 7 0

Knit directory: neural_scRNAseq/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it's best to always run the code in an empty environment.

The command set.seed(20200522) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7c1517d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    ._.DS_Store
    Ignored:    ._Filtered.pdf
    Ignored:    ._Rplots.pdf
    Ignored:    ._Unfiltered.pdf
    Ignored:    .__workflowr.yml
    Ignored:    ._coverage.pdf
    Ignored:    ._coverage_sashimi.pdf
    Ignored:    ._coverage_sashimi.png
    Ignored:    ._neural_scRNAseq.Rproj
    Ignored:    ._pbDS_cell_level.pdf
    Ignored:    ._pbDS_top_expr_umap.pdf
    Ignored:    ._pbDS_upset.pdf
    Ignored:    ._sashimi.pdf
    Ignored:    ._stmn2.pdf
    Ignored:    ._tdp.pdf
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/._.DS_Store
    Ignored:    analysis/._01-preprocessing.Rmd
    Ignored:    analysis/._01-preprocessing.html
    Ignored:    analysis/._02.1-SampleQC.Rmd
    Ignored:    analysis/._03-filtering.Rmd
    Ignored:    analysis/._04-clustering.Rmd
    Ignored:    analysis/._04-clustering.knit.md
    Ignored:    analysis/._04.1-cell_cycle.Rmd
    Ignored:    analysis/._05-annotation.Rmd
    Ignored:    analysis/._07-cluster-analysis-all-timepoints.Rmd
    Ignored:    analysis/._Lam-0-NSC_no_integration.Rmd
    Ignored:    analysis/._Lam-01-NSC_integration.Rmd
    Ignored:    analysis/._Lam-02-NSC_annotation.Rmd
    Ignored:    analysis/._NSC-1-clustering.Rmd
    Ignored:    analysis/._NSC-2-annotation.Rmd
    Ignored:    analysis/.__site.yml
    Ignored:    analysis/._additional_filtering.Rmd
    Ignored:    analysis/._additional_filtering_clustering.Rmd
    Ignored:    analysis/._index.Rmd
    Ignored:    analysis/._organoid-01-1-qualtiy-control.Rmd
    Ignored:    analysis/._organoid-01-clustering.Rmd
    Ignored:    analysis/._organoid-02-integration.Rmd
    Ignored:    analysis/._organoid-03-cluster_analysis.Rmd
    Ignored:    analysis/._organoid-04-group_integration.Rmd
    Ignored:    analysis/._organoid-04-stage_integration.Rmd
    Ignored:    analysis/._organoid-05-group_integration_cluster_analysis.Rmd
    Ignored:    analysis/._organoid-05-stage_integration_cluster_analysis.Rmd
    Ignored:    analysis/._organoid-06-1-prepare-sce.Rmd
    Ignored:    analysis/._organoid-06-conos-analysis-Seurat.Rmd
    Ignored:    analysis/._organoid-06-conos-analysis-function.Rmd
    Ignored:    analysis/._organoid-06-conos-analysis.Rmd
    Ignored:    analysis/._organoid-06-group-integration-conos-analysis.Rmd
    Ignored:    analysis/._organoid-07-conos-visualization.Rmd
    Ignored:    analysis/._organoid-07-group-integration-conos-visualization.Rmd
    Ignored:    analysis/._organoid-08-conos-comparison.Rmd
    Ignored:    analysis/._organoid-0x-sample_integration.Rmd
    Ignored:    analysis/01-preprocessing_cache/
    Ignored:    analysis/02-1-SampleQC_cache/
    Ignored:    analysis/02-quality_control_cache/
    Ignored:    analysis/02.1-SampleQC_cache/
    Ignored:    analysis/03-filtering_cache/
    Ignored:    analysis/04-clustering_cache/
    Ignored:    analysis/04.1-cell_cycle_cache/
    Ignored:    analysis/05-annotation_cache/
    Ignored:    analysis/06-clustering-all-timepoints_cache/
    Ignored:    analysis/07-cluster-analysis-all-timepoints_cache/
    Ignored:    analysis/Lam-01-NSC_integration_cache/
    Ignored:    analysis/Lam-02-NSC_annotation_cache/
    Ignored:    analysis/NSC-1-clustering_cache/
    Ignored:    analysis/NSC-2-annotation_cache/
    Ignored:    analysis/TDP-01-preprocessing_cache/
    Ignored:    analysis/TDP-02-quality_control_cache/
    Ignored:    analysis/TDP-03-filtering_cache/
    Ignored:    analysis/TDP-04-clustering_cache/
    Ignored:    analysis/TDP-05-00-filtering-plasmid-QC_cache/
    Ignored:    analysis/TDP-05-plasmid_expression_cache/
    Ignored:    analysis/TDP-06-cluster_analysis_cache/
    Ignored:    analysis/TDP-07-01-STMN2_expression_cache/
    Ignored:    analysis/TDP-07-cluster_12_cache/
    Ignored:    analysis/TDP-08-00-clustering-HA-D96_cache/
    Ignored:    analysis/TDP-08-01-HA-D96-expression-changes_cache/
    Ignored:    analysis/TDP-08-02-TDP_target_genes_cache/
    Ignored:    analysis/TDP-08-clustering-timeline-HA_cache/
    Ignored:    analysis/additional_filtering_cache/
    Ignored:    analysis/additional_filtering_clustering_cache/
    Ignored:    analysis/organoid-01-1-qualtiy-control_cache/
    Ignored:    analysis/organoid-01-clustering_cache/
    Ignored:    analysis/organoid-02-integration_cache/
    Ignored:    analysis/organoid-03-cluster_analysis_cache/
    Ignored:    analysis/organoid-04-group_integration_cache/
    Ignored:    analysis/organoid-04-stage_integration_cache/
    Ignored:    analysis/organoid-05-group_integration_cluster_analysis_cache/
    Ignored:    analysis/organoid-05-stage_integration_cluster_analysis_cache/
    Ignored:    analysis/organoid-06-conos-analysis_cache/
    Ignored:    analysis/organoid-06-conos-analysis_test_cache/
    Ignored:    analysis/organoid-06-group-integration-conos-analysis_cache/
    Ignored:    analysis/organoid-07-conos-visualization_cache/
    Ignored:    analysis/organoid-07-group-integration-conos-visualization_cache/
    Ignored:    analysis/organoid-08-conos-comparison_cache/
    Ignored:    analysis/organoid-0x-sample_integration_cache/
    Ignored:    analysis/sample5_QC_cache/
    Ignored:    analysis/timepoints-01-organoid-integration_cache/
    Ignored:    analysis/timepoints-02-cluster-analysis_cache/
    Ignored:    data/.DS_Store
    Ignored:    data/._.DS_Store
    Ignored:    data/._.smbdeleteAAA17ed8b4b
    Ignored:    data/._Lam_figure2_markers.R
    Ignored:    data/._README.md
    Ignored:    data/._Reactive_astrocytes_markers.xlsx
    Ignored:    data/._known_NSC_markers.R
    Ignored:    data/._known_cell_type_markers.R
    Ignored:    data/._metadata.csv
    Ignored:    data/._virus_cell_tropism_markers.R
    Ignored:    data/._~$Reactive_astrocytes_markers.xlsx
    Ignored:    data/data_sushi/
    Ignored:    data/filtered_feature_matrices/
    Ignored:    output/.DS_Store
    Ignored:    output/._.DS_Store
    Ignored:    output/._NSC_cluster2_marker_genes.txt
    Ignored:    output/._TDP-06-no_integration_cluster12_marker_genes.txt
    Ignored:    output/._TDP-06-no_integration_cluster13_marker_genes.txt
    Ignored:    output/._organoid_integration_cluster1_marker_genes.txt
    Ignored:    output/._tbl_TDP-08-01-muscat_cluster_0.txt
    Ignored:    output/._tbl_TDP-08-01-muscat_cluster_1.txt
    Ignored:    output/._tbl_TDP-08-01-muscat_cluster_10.txt
    Ignored:    output/._tbl_TDP-08-01-muscat_cluster_11.txt
    Ignored:    output/._tbl_TDP-08-01-muscat_cluster_12.txt
    Ignored:    output/._tbl_TDP-08-01-muscat_cluster_13.txt
    Ignored:    output/._tbl_TDP-08-01-muscat_cluster_14.txt
    Ignored:    output/._tbl_TDP-08-01-muscat_cluster_5.txt
    Ignored:    output/._tbl_TDP-08-01-muscat_cluster_7.txt
    Ignored:    output/._tbl_TDP-08-01-muscat_cluster_8.txt
    Ignored:    output/._tbl_TDP-08-01-muscat_cluster_all.xlsx
    Ignored:    output/._tbl_TDP-08-02-targets_hek_cluster_0.txt
    Ignored:    output/._tbl_TDP-08-02-targets_hek_cluster_1.txt
    Ignored:    output/._tbl_TDP-08-02-targets_hek_cluster_10.txt
    Ignored:    output/._tbl_TDP-08-02-targets_hek_cluster_11.txt
    Ignored:    output/._tbl_TDP-08-02-targets_hek_cluster_12.txt
    Ignored:    output/._tbl_TDP-08-02-targets_hek_cluster_13.txt
    Ignored:    output/._tbl_TDP-08-02-targets_hek_cluster_14.txt
    Ignored:    output/._tbl_TDP-08-02-targets_hek_cluster_5.txt
    Ignored:    output/._tbl_TDP-08-02-targets_hek_cluster_7.txt
    Ignored:    output/._tbl_TDP-08-02-targets_hek_cluster_8.txt
    Ignored:    output/._tbl_TDP-08-02-targets_hek_cluster_all.xlsx
    Ignored:    output/._~$tbl_TDP-08-02-targets_hek_cluster_all.xlsx
    Ignored:    output/CH-test-01-preprocessing.rds
    Ignored:    output/Lam-01-clustering.rds
    Ignored:    output/NSC_1_clustering.rds
    Ignored:    output/NSC_cluster1_marker_genes.txt
    Ignored:    output/NSC_cluster2_marker_genes.txt
    Ignored:    output/NSC_cluster3_marker_genes.txt
    Ignored:    output/NSC_cluster4_marker_genes.txt
    Ignored:    output/NSC_cluster5_marker_genes.txt
    Ignored:    output/NSC_cluster6_marker_genes.txt
    Ignored:    output/NSC_cluster7_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster0_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster10_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster11_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster12_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster13_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster14_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster15_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster16_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster17_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster1_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster2_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster3_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster4_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster5_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster6_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster7_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster8_marker_genes.txt
    Ignored:    output/TDP-06-no_integration_cluster9_marker_genes.txt
    Ignored:    output/TDP-06_scran_markers.rds
    Ignored:    output/additional_filtering.rds
    Ignored:    output/conos/
    Ignored:    output/conos_organoid-06-conos-analysis.rds
    Ignored:    output/conos_organoid-06-group-integration-conos-analysis.rds
    Ignored:    output/figures/
    Ignored:    output/organoid_integration_cluster10_marker_genes.txt
    Ignored:    output/organoid_integration_cluster11_marker_genes.txt
    Ignored:    output/organoid_integration_cluster12_marker_genes.txt
    Ignored:    output/organoid_integration_cluster13_marker_genes.txt
    Ignored:    output/organoid_integration_cluster14_marker_genes.txt
    Ignored:    output/organoid_integration_cluster15_marker_genes.txt
    Ignored:    output/organoid_integration_cluster16_marker_genes.txt
    Ignored:    output/organoid_integration_cluster17_marker_genes.txt
    Ignored:    output/organoid_integration_cluster1_marker_genes.txt
    Ignored:    output/organoid_integration_cluster2_marker_genes.txt
    Ignored:    output/organoid_integration_cluster3_marker_genes.txt
    Ignored:    output/organoid_integration_cluster4_marker_genes.txt
    Ignored:    output/organoid_integration_cluster5_marker_genes.txt
    Ignored:    output/organoid_integration_cluster6_marker_genes.txt
    Ignored:    output/organoid_integration_cluster7_marker_genes.txt
    Ignored:    output/organoid_integration_cluster8_marker_genes.txt
    Ignored:    output/organoid_integration_cluster9_marker_genes.txt
    Ignored:    output/res_TDP-08-01-muscat.rds
    Ignored:    output/sce_01_preprocessing.rds
    Ignored:    output/sce_02_quality_control.rds
    Ignored:    output/sce_03_filtering.rds
    Ignored:    output/sce_03_filtering_all_genes.rds
    Ignored:    output/sce_06-1-prepare-sce.rds
    Ignored:    output/sce_TDP-08-01-muscat.rds
    Ignored:    output/sce_TDP_01_preprocessing.rds
    Ignored:    output/sce_TDP_02_quality_control.rds
    Ignored:    output/sce_TDP_03_filtering.rds
    Ignored:    output/sce_TDP_03_filtering_all_genes.rds
    Ignored:    output/sce_organoid-01-clustering.rds
    Ignored:    output/sce_preprocessing.rds
    Ignored:    output/so_04-stage_integration.rds
    Ignored:    output/so_04_1_cell_cycle.rds
    Ignored:    output/so_04_clustering.rds
    Ignored:    output/so_06-clustering_all_timepoints.rds
    Ignored:    output/so_08-00_clustering_HA_D96.rds
    Ignored:    output/so_08-clustering_timeline_HA.rds
    Ignored:    output/so_0x-sample_integration.rds
    Ignored:    output/so_TDP-06-cluster-analysis.rds
    Ignored:    output/so_TDP_04_clustering.rds
    Ignored:    output/so_TDP_05_plasmid_expression.rds
    Ignored:    output/so_additional_filtering_clustering.rds
    Ignored:    output/so_integrated_organoid-02-integration.rds
    Ignored:    output/so_merged_organoid-02-integration.rds
    Ignored:    output/so_organoid-01-clustering.rds
    Ignored:    output/so_sample_organoid-01-clustering.rds
    Ignored:    output/so_timepoints-01-organoid_integration.rds
    Ignored:    output/tbl_TDP-08-01-muscat.rds
    Ignored:    output/tbl_TDP-08-01-muscat_cluster_0.txt
    Ignored:    output/tbl_TDP-08-01-muscat_cluster_1.txt
    Ignored:    output/tbl_TDP-08-01-muscat_cluster_10.txt
    Ignored:    output/tbl_TDP-08-01-muscat_cluster_11.txt
    Ignored:    output/tbl_TDP-08-01-muscat_cluster_12.txt
    Ignored:    output/tbl_TDP-08-01-muscat_cluster_13.txt
    Ignored:    output/tbl_TDP-08-01-muscat_cluster_14.txt
    Ignored:    output/tbl_TDP-08-01-muscat_cluster_5.txt
    Ignored:    output/tbl_TDP-08-01-muscat_cluster_7.txt
    Ignored:    output/tbl_TDP-08-01-muscat_cluster_8.txt
    Ignored:    output/tbl_TDP-08-01-muscat_cluster_all.xlsx
    Ignored:    output/tbl_TDP-08-02-targets_hek.rds
    Ignored:    output/tbl_TDP-08-02-targets_hek_cluster_0.txt
    Ignored:    output/tbl_TDP-08-02-targets_hek_cluster_1.txt
    Ignored:    output/tbl_TDP-08-02-targets_hek_cluster_10.txt
    Ignored:    output/tbl_TDP-08-02-targets_hek_cluster_11.txt
    Ignored:    output/tbl_TDP-08-02-targets_hek_cluster_12.txt
    Ignored:    output/tbl_TDP-08-02-targets_hek_cluster_13.txt
    Ignored:    output/tbl_TDP-08-02-targets_hek_cluster_14.txt
    Ignored:    output/tbl_TDP-08-02-targets_hek_cluster_5.txt
    Ignored:    output/tbl_TDP-08-02-targets_hek_cluster_7.txt
    Ignored:    output/tbl_TDP-08-02-targets_hek_cluster_8.txt
    Ignored:    output/tbl_TDP-08-02-targets_hek_cluster_all.xlsx
    Ignored:    output/~$tbl_TDP-08-02-targets_hek_cluster_all.xlsx
    Ignored:    scripts/.DS_Store
    Ignored:    scripts/._.DS_Store
    Ignored:    scripts/._bu_Rcode.R
    Ignored:    scripts/._plasmid_expression.sh
    Ignored:    scripts/._plasmid_expression_cell_hashing_test.sh
    Ignored:    scripts/._prepare_salmon_transcripts.R
    Ignored:    scripts/._prepare_salmon_transcripts_cell_hashing_test.R

Untracked files:
    Untracked:  Filtered.pdf
    Untracked:  Rplots.pdf
    Untracked:  Unfiltered
    Untracked:  Unfiltered.pdf
    Untracked:  analysis/Lam-0-NSC_no_integration.Rmd
    Untracked:  analysis/TDP-07-01-STMN2_expression copy.Rmd
    Untracked:  analysis/additional_filtering.Rmd
    Untracked:  analysis/additional_filtering_clustering.Rmd
    Untracked:  analysis/organoid-01-1-qualtiy-control.Rmd
    Untracked:  analysis/organoid-06-conos-analysis-Seurat.Rmd
    Untracked:  analysis/organoid-06-conos-analysis-function.Rmd
    Untracked:  analysis/organoid-07-conos-visualization.Rmd
    Untracked:  analysis/organoid-07-group-integration-conos-visualization.Rmd
    Untracked:  analysis/organoid-08-conos-comparison.Rmd
    Untracked:  analysis/organoid-0x-sample_integration.Rmd
    Untracked:  analysis/sample5_QC.Rmd
    Untracked:  coverage.pdf
    Untracked:  coverage_sashimi.pdf
    Untracked:  coverage_sashimi.png
    Untracked:  data/Homo_sapiens.GRCh38.98.sorted.gtf
    Untracked:  data/Kanton_et_al/
    Untracked:  data/Lam_et_al/
    Untracked:  data/Sep2020/
    Untracked:  data/cell_hashing_test/
    Untracked:  data/reference/
    Untracked:  data/virus_cell_tropism_markers.R
    Untracked:  data/~$Reactive_astrocytes_markers.xlsx
    Untracked:  pbDS_cell_level.pdf
    Untracked:  pbDS_heatmap.pdf
    Untracked:  pbDS_top_expr_umap.pdf
    Untracked:  pbDS_upset.pdf
    Untracked:  sashimi.pdf
    Untracked:  scripts/bu_Rcode.R
    Untracked:  scripts/bu_code.Rmd
    Untracked:  scripts/plasmid_expression_cell_hashing_test.sh
    Untracked:  scripts/prepare_salmon_transcripts_cell_hashing_test.R
    Untracked:  scripts/salmon-latest_linux_x86_64/
    Untracked:  stmn2.pdf
    Untracked:  tdp.pdf

Unstaged changes:
    Modified:   analysis/05-annotation.Rmd
    Modified:   analysis/TDP-04-clustering.Rmd
    Modified:   analysis/TDP-08-01-HA-D96-expression-changes.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/organoid-02-integration.Rmd
    Modified:   analysis/organoid-04-group_integration.Rmd
    Modified:   analysis/organoid-06-conos-analysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/CH-test-01-preprocessing.Rmd) and HTML (docs/CH-test-01-preprocessing.html) files. If you've configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 7c1517d khembach 2021-05-17 run HTO demultipxing before and after filtering of low quality cells
html 4f37f3d khembach 2021-05-14 Build site.
Rmd d03901f khembach 2021-05-14 preprocessing and quality control of HTO test experiment

Load packages

library(DropletUtils)
library(BiocParallel)
library(ggplot2)
library(scater)
library(readxl)
library(Seurat)
library(scales)
library(viridis)
library(dplyr)

Importing CellRanger output and metadata

fs <- file.path("data", "cell_hashing_test", 
                "CellRangerCount_57443_2021-05-12--11-37-28", "HashTag_test", 
                "filtered_feature_bc_matrix.h5")
names(fs) <- "cell_hashing_test"
sce_raw <- read10xCounts(samples = fs)

# rename colnames and dimnames
rowData(sce_raw)$Type <- NULL
names(rowData(sce_raw)) <- c("ensembl_id", "symbol")
names(colData(sce_raw)) <- c("sample_id", "barcode")
sce_raw$sample_id <- factor(sce_raw$sample_id)

# load metadata
meta <- read_excel(file.path("data", "cell_hashing_test", "SampleName_feature_ref_MHP.xlsm"))
m <- match(meta$name, rowData(sce_raw)$symbol)

## separate gene counts from HTO counts
rowData(sce_raw) %>% tail
DataFrame with 6 rows and 2 columns
                     ensembl_id      symbol
                    <character> <character>
ENSG00000276017 ENSG00000276017  AC007325.1
ENSG00000278817 ENSG00000278817  AC007325.4
ENSG00000277196 ENSG00000277196  AC007325.2
B0253                     B0253    Hashtag3
B0254                     B0254    Hashtag4
B0257                     B0257    Hashtag7
sce <- sce_raw[-m,]
dimnames(sce) <- list(with(rowData(sce), paste(ensembl_id, symbol, sep = ".")),
                      with(colData(sce), paste(barcode, sample_id, sep = ".")))

Quality control

We compute cell-level QC.

# remove empty rows
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
dim(sce)
[1] 18824 17631
(mito <- grep("MT-", rownames(sce), value = TRUE))
 [1] "ENSG00000210049.MT-TF"   "ENSG00000211459.MT-RNR1"
 [3] "ENSG00000210077.MT-TV"   "ENSG00000210082.MT-RNR2"
 [5] "ENSG00000209082.MT-TL1"  "ENSG00000198888.MT-ND1" 
 [7] "ENSG00000210100.MT-TI"   "ENSG00000210107.MT-TQ"  
 [9] "ENSG00000210112.MT-TM"   "ENSG00000198763.MT-ND2" 
[11] "ENSG00000210117.MT-TW"   "ENSG00000210127.MT-TA"  
[13] "ENSG00000210135.MT-TN"   "ENSG00000210140.MT-TC"  
[15] "ENSG00000210144.MT-TY"   "ENSG00000198804.MT-CO1" 
[17] "ENSG00000210151.MT-TS1"  "ENSG00000210154.MT-TD"  
[19] "ENSG00000198712.MT-CO2"  "ENSG00000210156.MT-TK"  
[21] "ENSG00000228253.MT-ATP8" "ENSG00000198899.MT-ATP6"
[23] "ENSG00000198938.MT-CO3"  "ENSG00000210164.MT-TG"  
[25] "ENSG00000198840.MT-ND3"  "ENSG00000210174.MT-TR"  
[27] "ENSG00000212907.MT-ND4L" "ENSG00000198886.MT-ND4" 
[29] "ENSG00000210176.MT-TH"   "ENSG00000210184.MT-TS2" 
[31] "ENSG00000210191.MT-TL2"  "ENSG00000198786.MT-ND5" 
[33] "ENSG00000198695.MT-ND6"  "ENSG00000210194.MT-TE"  
[35] "ENSG00000198727.MT-CYB"  "ENSG00000210195.MT-TT"  
[37] "ENSG00000210196.MT-TP"  
sce <- addPerCellQC(sce, subsets = list(Mt = mito))
# we compute the fraction of mitochondrial genes and the logit of it 
sce$subsets_Mt_fraction <- (sce$subsets_Mt_percent + 0.001) /100
sce$subsets_Mt_fraction_logit <- qlogis(sce$subsets_Mt_fraction + 0.001)
# library size
summary(sce$sum)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    500     642     862    5216    5818   96619 
# number of detected genes per cell
summary(sce$detected)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    302     491     609    1650    2540    9081 
# percentage of counts that come from mitochondrial genes:
summary(sce$subsets_Mt_percent)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
 0.01666  3.86824  7.70896  9.93049 13.29026 87.60776 

Diagnostic plots

The number of counts per cell:

plotColData(sce, x = "sample_id", y = "sum") + scale_y_log10()

Version Author Date
4f37f3d khembach 2021-05-14

The number of genes:

plotColData(sce, x = "sample_id", y = "detected") + scale_y_log10() 

Version Author Date
4f37f3d khembach 2021-05-14

The percentage of mitochondrial genes:

plotColData(sce, x = "sample_id", y = "subsets_Mt_percent")

Version Author Date
4f37f3d khembach 2021-05-14

We plot the total number of counts against the number of detected genes and color by the fraction of mitochondrial genes:

cd <- data.frame(colData(sce))
ggplot(cd, aes(x = sum, y = detected, color = subsets_Mt_fraction)) +
  geom_point(alpha = 0.7) + 
  geom_density_2d(color = "grey", bins = 6) +
  scale_x_log10() +
  scale_y_log10() +
  facet_wrap(~sample_id) + 
  theme_bw() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  xlab("sum of counts") + 
  ylab("number of detected genes") + 
  labs(color = "mitochondrial fraction") +
  scale_color_viridis(trans = "logit", breaks = c(0.01, 0.1, 0.25, 0.5, 0.75))

Version Author Date
4f37f3d khembach 2021-05-14

We plot the total number of counts against the mitochondrial content. Well-behaved cells should have many expressed genes and a low fraction of mitochondrial genes. High mitochondrial content indicates empty or damaged cells.

ggplot(cd, aes(x = sum, y = subsets_Mt_fraction)) +
  geom_point(color = "darkgrey", alpha = 0.3) + 
  geom_density_2d(color = "lightblue") +
  scale_x_log10() +
  scale_y_continuous(trans = 'logit', 
                     breaks = c(0.01, 0.05, 0.1, 0.2, 0.5, 0.75)) +
  facet_wrap(~sample_id) + 
  theme_bw() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  xlab("sum of counts") + 
  ylab("logit(mitochondrial fraction)")

Version Author Date
4f37f3d khembach 2021-05-14

Create Seurat object and split gene and HTO counts

## convert DDelayedMatrix to dgCMatrix for import into Seurat object
counts <- as(counts(sce, withDimnames = FALSE), "dgCMatrix")
colnames(counts) <- colnames(counts(sce))
rownames(counts) <- rownames(counts(sce))
                             
so <- CreateSeuratObject(
    counts = counts,
    meta.data = data.frame(colData(sce)),
    project = "cell_hashing_test")
Warning: Feature names cannot have underscores ('_'), replacing with dashes
('-')
## add HTO data as independent assay
hto_counts <- as(counts(sce_raw, withDimnames = FALSE)[m,with(colData(sce), 
                                    paste(barcode, sample_id, sep = ".")) %in% 
                                colnames(sce)], "dgCMatrix")
colnames(hto_counts) <- colnames(sce)
rownames(hto_counts) <- rownames(sce_raw)[m]
so[["HTO"]] <- CreateAssayObject(counts = hto_counts)

Data normalization

DefaultAssay(so) <- "RNA"
# Normalize RNA data with log normalization
so <- NormalizeData(so)
# Find and scale variable features
so <- FindVariableFeatures(so, selection.method = "mean.var.plot")
so <- ScaleData(so, features = VariableFeatures(so))

# Normalize HTO data, here we use centered log-ratio (CLR) transformation
so <- NormalizeData(so, assay = "HTO", normalization.method = "CLR")

Demultiplex cells based on HTO enrichment

so <- HTODemux(so, assay = "HTO", positive.quantile = 0.99)
Cutoff for B0253 : 312 reads
Cutoff for B0254 : 446 reads
Cutoff for B0257 : 369 reads

Visualize results

# Global classification results
table(so$HTO_classification.global)

 Doublet Negative  Singlet 
    2861    10318     4452 
# Group cells based on the max HTO signal
Idents(so) <- "HTO_maxID"
# Group cells based on the max HTO signal
RidgePlot(so, assay = "HTO", features = rownames(so[["HTO"]]), ncol = 3)

Version Author Date
4f37f3d khembach 2021-05-14
# Visualize pairs of HTO signals to check mutual exclusivity in singlets
DefaultAssay(object = so) <- "HTO"
FeatureScatter(so, feature1 = "B0253", feature2 = "B0254")

Version Author Date
4f37f3d khembach 2021-05-14
FeatureScatter(so, feature1 = "B0257", feature2 = "B0254")

Version Author Date
4f37f3d khembach 2021-05-14
FeatureScatter(so, feature1 = "B0253", feature2 = "B0257")

Version Author Date
4f37f3d khembach 2021-05-14
## compare number of UMIs for singlet's, doublets and negative cells
Idents(so) <- "HTO_classification.global"
VlnPlot(so, features = "nCount_HTO", pt.size = 0.1, log = TRUE)

Version Author Date
4f37f3d khembach 2021-05-14
VlnPlot(so, features = "nCount_RNA", pt.size = 0.1, log = TRUE)

Version Author Date
4f37f3d khembach 2021-05-14
## tSNE for HTOs
# First, we will remove negative cells from the object
subs <- subset(so, idents = "Negative", invert = TRUE)
subs$HTO_classification %>% table
.
      B0253 B0253_B0254 B0253_B0257       B0254 B0254_B0257       B0257 
       1424         916         875        1329        1070        1699 
# Calculate a tSNE embedding of the HTO data
DefaultAssay(subs) <- "HTO"
subs <- ScaleData(subs, features = rownames(subs), 
    verbose = FALSE)
subs <- RunPCA(subs, features = rownames(subs), approx = FALSE, npcs = 3)
Warning in print.DimReduc(x = reduction.data, dims = ndims.print, nfeatures =
nfeatures.print): Only 3 dimensions have been computed.
Warning: Requested number is larger than the number of available items (3).
Setting to 3.

Warning: Requested number is larger than the number of available items (3).
Setting to 3.

Warning: Requested number is larger than the number of available items (3).
Setting to 3.
subs <- RunTSNE(subs, dims = 1:3, perplexity = 100)
Idents(subs) <- "HTO_classification.global"
DimPlot(subs)

Version Author Date
4f37f3d khembach 2021-05-14
Idents(subs) <- 'HTO_classification'
DimPlot(subs)

Version Author Date
4f37f3d khembach 2021-05-14
# HTO heatmap
HTOHeatmap(so, assay = "HTO", ncells = 5000)

Version Author Date
4f37f3d khembach 2021-05-14

Cluster based on gene counts and visualize cells

DefaultAssay(so) <- "RNA"
# Extract the singlets
singlets <- subset(so, idents = "Singlet")
singlets$HTO_classification %>% table
.
B0253 B0254 B0257 
 1424  1329  1699 
# Select the top 1000 most variable features
singlets <- FindVariableFeatures(singlets, selection.method = "mean.var.plot")
# Scaling RNA data, we only scale the variable features here for efficiency
singlets <- ScaleData(singlets, features = VariableFeatures(singlets))
# Run PCA
singlets <- RunPCA(singlets, features = VariableFeatures(singlets))

# We select the top 10 PCs for clustering and tSNE based on PCElbowPlot
singlets <- FindNeighbors(singlets, reduction = "pca", dims = 1:10)
singlets <- FindClusters(singlets, resolution = 0.6, verbose = FALSE)
singlets <- RunTSNE(singlets, reduction = "pca", dims = 1:10)
singlets <- RunUMAP(singlets, reduction = "pca", dims = 1:10)
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session
# Projecting singlet identities on TSNE visualization
DimPlot(singlets, group.by = "HTO_classification", reduction = "tsne")

Version Author Date
4f37f3d khembach 2021-05-14
DimPlot(singlets, group.by = "HTO_classification", reduction = "umap")

Version Author Date
4f37f3d khembach 2021-05-14

Identification of low quality cells

Based on the QC metrics, we identify cells with lower quality:

cols <- c("sum", "detected", "subsets_Mt_percent")
log <- c(TRUE, TRUE, FALSE)
type <- c("lower", "lower", "higher")

drop_cols <- paste0(cols, "_drop")
for (i in seq_along(cols))
    colData(sce)[[drop_cols[i]]] <- isOutlier(sce[[cols[i]]], 
        nmads = 1, type = type[i], log = log[i], batch = sce$sample_id)

# Overlap of outlier cells from two metrics
sapply(drop_cols, function(i) 
    sapply(drop_cols, function(j)
        sum(sce[[i]] & sce[[j]])))
                        sum_drop detected_drop subsets_Mt_percent_drop
sum_drop                       0             0                       0
detected_drop                  0            53                      49
subsets_Mt_percent_drop        0            49                    3900
colData(sce)$discard <- rowSums(data.frame(colData(sce)[,drop_cols])) > 0
table(colData(sce)$discard)

FALSE  TRUE 
13727  3904 
## Plot the metrics and highlight the discarded cells
plotColData(sce, x = "sample_id", y = "sum", colour_by = "discard") + 
  scale_y_log10()

Version Author Date
4f37f3d khembach 2021-05-14
plotColData(sce, x = "sample_id", y = "detected", colour_by = "discard") + 
  scale_y_log10()

Version Author Date
4f37f3d khembach 2021-05-14
plotColData(sce, x = "sample_id", y = "subsets_Mt_percent", 
            colour_by = "discard")

Version Author Date
4f37f3d khembach 2021-05-14
## we manually filter filter the cells with less than 2000 UMIs
colData(sce)$manual_discard_sum <- colData(sce)$sum < 1000 
## filter the cells with less than 800 detected genes
colData(sce)$manual_discard_detected <- colData(sce)$detected < 800 


## highlight all manually discarded cells
colData(sce)$manual_discard <- colData(sce)$manual_discard_sum |
                                   colData(sce)$manual_discard_detected
plotColData(sce, x = "sample_id", y = "sum", colour_by = "manual_discard") + 
  scale_y_log10()

Version Author Date
4f37f3d khembach 2021-05-14
plotColData(sce, x = "sample_id", y = "detected", colour_by = "manual_discard") + 
  scale_y_log10()

Version Author Date
4f37f3d khembach 2021-05-14
## highlight all discarded cells
colData(sce)$discard <- colData(sce)$manual_discard |
                                   colData(sce)$discard
plotColData(sce, x = "sample_id", y = "detected", colour_by = "discard") + 
  scale_y_log10()

Version Author Date
4f37f3d khembach 2021-05-14
plotColData(sce, x = "sample_id", y = "sum", colour_by = "discard") + 
  scale_y_log10()

Version Author Date
4f37f3d khembach 2021-05-14
plotColData(sce, x = "sample_id", y = "subsets_Mt_percent", 
            colour_by = "discard")

Version Author Date
4f37f3d khembach 2021-05-14
table(colData(sce)$discard)

FALSE  TRUE 
 5542 12089 

We discard the outlier cells

dim(sce)
[1] 18824 17631
sce_filtered <- sce[,!sce$discard]
dim(sce_filtered)
[1] 18824  5542

Create Seurat object and split gene and HTO counts

## convert DDelayedMatrix to dgCMatrix for import into Seurat object
counts <- as(counts(sce_filtered, withDimnames = FALSE), "dgCMatrix")
colnames(counts) <- colnames(counts(sce_filtered))
rownames(counts) <- rownames(counts(sce_filtered))
                             
so_filtered <- CreateSeuratObject(
    counts = counts,
    meta.data = data.frame(colData(sce_filtered)),
    project = "cell_hashing_test")
Warning: Feature names cannot have underscores ('_'), replacing with dashes
('-')
## add HTO data as independent assay
hto_counts <- as(counts(sce_raw, withDimnames = FALSE)[m,with(colData(sce), 
                                    paste(barcode, sample_id, sep = ".")) %in% 
                                colnames(sce_filtered)], "dgCMatrix")
colnames(hto_counts) <- colnames(sce_filtered)
rownames(hto_counts) <- rownames(sce_raw)[m]
so_filtered[["HTO"]] <- CreateAssayObject(counts = hto_counts)

Data normalization

DefaultAssay(so_filtered) <- "RNA"
# Normalize RNA data with log normalization
so_filtered <- NormalizeData(so_filtered)
# Find and scale variable features
so_filtered <- FindVariableFeatures(so_filtered, selection.method = "mean.var.plot")
so_filtered <- ScaleData(so_filtered, features = VariableFeatures(so_filtered))

# Normalize HTO data, here we use centered log-ratio (CLR) transformation
so_filtered <- NormalizeData(so_filtered, assay = "HTO", normalization.method = "CLR")

Demultiplex cells based on HTO enrichment

so_filtered <- HTODemux(so_filtered, assay = "HTO", positive.quantile = 0.99)
Cutoff for B0253 : 801 reads
Cutoff for B0254 : 1097 reads
Cutoff for B0257 : 993 reads

Visualize results

# Global classification results
table(so_filtered$HTO_classification.global)

 Doublet Negative  Singlet 
     656     2119     2767 
# Group cells based on the max HTO signal
Idents(so_filtered) <- "HTO_maxID"
# Group cells based on the max HTO signal
RidgePlot(so_filtered, assay = "HTO", features = rownames(so_filtered[["HTO"]]), ncol = 3)

# Visualize pairs of HTO signals to check mutual exclusivity in singlets
DefaultAssay(object = so_filtered) <- "HTO"
FeatureScatter(so_filtered, feature1 = "B0253", feature2 = "B0254")

FeatureScatter(so_filtered, feature1 = "B0257", feature2 = "B0254")

FeatureScatter(so_filtered, feature1 = "B0253", feature2 = "B0257")

## compare number of UMIs for singlet's, doublets and negative cells
Idents(so_filtered) <- "HTO_classification.global"
VlnPlot(so_filtered, features = "nCount_HTO", pt.size = 0.1, log = TRUE)

VlnPlot(so_filtered, features = "nCount_RNA", pt.size = 0.1, log = TRUE)

## tSNE for HTOs
# First, we will remove negative cells from the object
subs <- subset(so_filtered, idents = "Negative", invert = TRUE)
subs$HTO_classification %>% table
.
      B0253 B0253_B0254 B0253_B0257       B0254 B0254_B0257       B0257 
        830         236         198         939         222         998 
# Calculate a tSNE embedding of the HTO data
DefaultAssay(subs) <- "HTO"
subs <- ScaleData(subs, features = rownames(subs), 
    verbose = FALSE)
subs <- RunPCA(subs, features = rownames(subs), approx = FALSE, npcs = 3)
Warning in print.DimReduc(x = reduction.data, dims = ndims.print, nfeatures =
nfeatures.print): Only 3 dimensions have been computed.
Warning: Requested number is larger than the number of available items (3).
Setting to 3.

Warning: Requested number is larger than the number of available items (3).
Setting to 3.

Warning: Requested number is larger than the number of available items (3).
Setting to 3.
subs <- RunTSNE(subs, dims = 1:3, perplexity = 100)
Idents(subs) <- "HTO_classification.global"
DimPlot(subs)

Idents(subs) <- 'HTO_classification'
DimPlot(subs)

# HTO heatmap
HTOHeatmap(so_filtered, assay = "HTO", ncells = 5000)

Cluster based on gene counts and visualize cells

DefaultAssay(so_filtered) <- "RNA"
# Extract the singlets
singlets_filtered <- subset(so_filtered, idents = "Singlet")
singlets_filtered$HTO_classification %>% table
.
B0253 B0254 B0257 
  830   939   998 
# Select the top 1000 most variable features
singlets_filtered <- FindVariableFeatures(singlets_filtered, selection.method = "mean.var.plot")
# Scaling RNA data, we only scale the variable features here for efficiency
singlets_filtered <- ScaleData(singlets_filtered, features = VariableFeatures(singlets_filtered))
# Run PCA
singlets_filtered <- RunPCA(singlets_filtered, features = VariableFeatures(singlets_filtered))

# We select the top 10 PCs for clustering and tSNE based on PCElbowPlot
singlets_filtered <- FindNeighbors(singlets_filtered, reduction = "pca", dims = 1:10)
singlets_filtered <- FindClusters(singlets_filtered, resolution = 0.6, verbose = FALSE)
singlets_filtered <- RunTSNE(singlets_filtered, reduction = "pca", dims = 1:10)
singlets_filtered <- RunUMAP(singlets_filtered, reduction = "pca", dims = 1:10)

# Projecting singlet identities on TSNE visualization
DimPlot(singlets_filtered, group.by = "HTO_classification", reduction = "tsne")

DimPlot(singlets_filtered, group.by = "HTO_classification", reduction = "umap")

Save data to RDS

saveRDS(sce, file.path("output", "CH-test-01-preprocessing.rds"))
saveRDS(singlets, file.path("output", "CH-test-01-preprocessing_singlets.rds"))
saveRDS(so, file.path("output", "CH-test-01-preprocessing_so.rds"))
saveRDS(singlets_filtered, file.path("output", "CH-test-01-preprocessing_singlets_filtered.rds"))
saveRDS(so_filtered, file.path("output", "CH-test-01-preprocessing_so_filtered.rds"))

sessionInfo()
R version 4.0.5 (2021-03-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS

Matrix products: default
BLAS:   /usr/local/R/R-4.0.5/lib/libRblas.so
LAPACK: /usr/local/R/R-4.0.5/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] dplyr_1.0.2                 viridis_0.5.1              
 [3] viridisLite_0.3.0           scales_1.1.1               
 [5] SeuratObject_4.0.1          Seurat_4.0.1               
 [7] readxl_1.3.1                scater_1.16.2              
 [9] ggplot2_3.3.2               BiocParallel_1.22.0        
[11] DropletUtils_1.8.0          SingleCellExperiment_1.10.1
[13] SummarizedExperiment_1.18.1 DelayedArray_0.14.0        
[15] matrixStats_0.56.0          Biobase_2.48.0             
[17] GenomicRanges_1.40.0        GenomeInfoDb_1.24.2        
[19] IRanges_2.22.2              S4Vectors_0.26.1           
[21] BiocGenerics_0.34.0         workflowr_1.6.2            

loaded via a namespace (and not attached):
  [1] backports_1.1.9           plyr_1.8.6               
  [3] igraph_1.2.5              lazyeval_0.2.2           
  [5] splines_4.0.5             listenv_0.8.0            
  [7] scattermore_0.7           digest_0.6.25            
  [9] htmltools_0.5.0           magrittr_1.5             
 [11] tensor_1.5                cluster_2.1.0            
 [13] ROCR_1.0-11               limma_3.44.3             
 [15] globals_0.12.5            R.utils_2.9.2            
 [17] spatstat.sparse_2.0-0     colorspace_1.4-1         
 [19] rappdirs_0.3.1            ggrepel_0.8.2            
 [21] xfun_0.15                 crayon_1.3.4             
 [23] RCurl_1.98-1.3            jsonlite_1.7.2           
 [25] spatstat.data_2.1-0       survival_3.2-3           
 [27] zoo_1.8-8                 glue_1.4.2               
 [29] polyclip_1.10-0           gtable_0.3.0             
 [31] zlibbioc_1.34.0           XVector_0.28.0           
 [33] leiden_0.3.3              BiocSingular_1.4.0       
 [35] Rhdf5lib_1.10.0           future.apply_1.6.0       
 [37] HDF5Array_1.16.1          abind_1.4-5              
 [39] edgeR_3.30.3              miniUI_0.1.1.1           
 [41] Rcpp_1.0.5                isoband_0.2.2            
 [43] xtable_1.8-4              reticulate_1.16          
 [45] spatstat.core_2.1-2       dqrng_0.2.1              
 [47] rsvd_1.0.3                htmlwidgets_1.5.1        
 [49] httr_1.4.2                RColorBrewer_1.1-2       
 [51] ellipsis_0.3.1            ica_1.0-2                
 [53] farver_2.0.3              pkgconfig_2.0.3          
 [55] R.methodsS3_1.8.0         uwot_0.1.10              
 [57] deldir_0.2-10             locfit_1.5-9.4           
 [59] labeling_0.3              tidyselect_1.1.0         
 [61] rlang_0.4.10              reshape2_1.4.4           
 [63] later_1.1.0.1             munsell_0.5.0            
 [65] cellranger_1.1.0          tools_4.0.5              
 [67] generics_0.0.2            ggridges_0.5.2           
 [69] evaluate_0.14             stringr_1.4.0            
 [71] fastmap_1.0.1             goftest_1.2-2            
 [73] yaml_2.2.1                knitr_1.29               
 [75] fs_1.5.0                  fitdistrplus_1.1-1       
 [77] purrr_0.3.4               RANN_2.6.1               
 [79] nlme_3.1-148              pbapply_1.4-2            
 [81] future_1.17.0             whisker_0.4              
 [83] mime_0.9                  R.oo_1.23.0              
 [85] compiler_4.0.5            beeswarm_0.2.3           
 [87] plotly_4.9.2.1            png_0.1-7                
 [89] spatstat.utils_2.1-0      tibble_3.0.3             
 [91] stringi_1.4.6             RSpectra_0.16-0          
 [93] lattice_0.20-41           Matrix_1.3-3             
 [95] vctrs_0.3.4               pillar_1.4.6             
 [97] lifecycle_1.0.0           spatstat.geom_2.1-0      
 [99] lmtest_0.9-37             RcppAnnoy_0.0.18         
[101] BiocNeighbors_1.6.0       data.table_1.12.8        
[103] cowplot_1.0.0             bitops_1.0-6             
[105] irlba_2.3.3               httpuv_1.5.4             
[107] patchwork_1.0.1           R6_2.4.1                 
[109] promises_1.1.1            KernSmooth_2.23-17       
[111] gridExtra_2.3             vipor_0.4.5              
[113] codetools_0.2-16          MASS_7.3-51.6            
[115] rhdf5_2.32.2              rprojroot_1.3-2          
[117] withr_2.4.1               sctransform_0.3.2        
[119] GenomeInfoDbData_1.2.3    mgcv_1.8-31              
[121] beachmat_2.4.0            rpart_4.1-15             
[123] grid_4.0.5                tidyr_1.1.0              
[125] rmarkdown_2.3             DelayedMatrixStats_1.10.1
[127] Rtsne_0.15                git2r_0.27.1             
[129] shiny_1.5.0               ggbeeswarm_0.6.0