Last updated: 2020-06-26

Checks: 7 0

Knit directory: neural_scRNAseq/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200522) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version afe57cc. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    ._.DS_Store
    Ignored:    ._MA.pdf
    Ignored:    ._MA2.pdf
    Ignored:    ._MA_plots.pdf
    Ignored:    ._Rplots.pdf
    Ignored:    .__workflowr.yml
    Ignored:    ._hm.pdf
    Ignored:    ._neural_scRNAseq.Rproj
    Ignored:    ._sample5_MA_2nd_pop.pdf
    Ignored:    ._sample5_QC_2nd_pop.pdf
    Ignored:    ._tmp.pdf
    Ignored:    ._tmp_detected.pdf
    Ignored:    ._tmp_manual_discard.pdf
    Ignored:    ._tmp_manual_discard1.pdf
    Ignored:    ._tmp_manual_discard_all.pdf
    Ignored:    ._tmp_manual_discard_all1.pdf
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/._.DS_Store
    Ignored:    analysis/._01-preprocessing.Rmd
    Ignored:    analysis/._01-preprocessing.html
    Ignored:    analysis/._02.1-SampleQC.Rmd
    Ignored:    analysis/._03-filtering.Rmd
    Ignored:    analysis/._04-clustering.Rmd
    Ignored:    analysis/._04-clustering.knit.md
    Ignored:    analysis/._04.1-cell_cycle.Rmd
    Ignored:    analysis/._05-annotation.Rmd
    Ignored:    analysis/.__site.yml
    Ignored:    analysis/._additional_filtering.Rmd
    Ignored:    analysis/._additional_filtering_clustering.Rmd
    Ignored:    analysis/._index.Rmd
    Ignored:    analysis/01-preprocessing_cache/
    Ignored:    analysis/02-1-SampleQC_cache/
    Ignored:    analysis/02-quality_control_cache/
    Ignored:    analysis/02.1-SampleQC_cache/
    Ignored:    analysis/03-filtering_cache/
    Ignored:    analysis/04-clustering_cache/
    Ignored:    analysis/04.1-cell_cycle_cache/
    Ignored:    analysis/additional_filtering_cache/
    Ignored:    analysis/additional_filtering_clustering_cache/
    Ignored:    analysis/sample5_QC_cache/
    Ignored:    data/.DS_Store
    Ignored:    data/._.DS_Store
    Ignored:    data/._.smbdeleteAAA17ed8b4b
    Ignored:    data/._metadata.csv
    Ignored:    data/data_sushi/
    Ignored:    data/filtered_feature_matrices/
    Ignored:    output/.DS_Store
    Ignored:    output/._.DS_Store
    Ignored:    output/additional_filtering.rds
    Ignored:    output/figures/
    Ignored:    output/sce_01_preprocessing.rds
    Ignored:    output/sce_02_quality_control.rds
    Ignored:    output/sce_03_filtering.rds
    Ignored:    output/sce_preprocessing.rds
    Ignored:    output/so_04_1_cell_cycle.rds
    Ignored:    output/so_04_clustering.rds
    Ignored:    output/so_additional_filtering_clustering.rds

Untracked files:
    Untracked:  MA.pdf
    Untracked:  MA2.pdf
    Untracked:  MA_plots.pdf
    Untracked:  Rplots.pdf
    Untracked:  analysis/additional_filtering.Rmd
    Untracked:  analysis/additional_filtering_clustering.Rmd
    Untracked:  analysis/sample5_QC.Rmd
    Untracked:  analysis/tabsets.Rmd
    Untracked:  hm.pdf
    Untracked:  sample5_MA_2nd_pop.pdf
    Untracked:  sample5_QC_2nd_pop.pdf
    Untracked:  scripts/
    Untracked:  tmp.pdf
    Untracked:  tmp_detected.pdf
    Untracked:  tmp_manual_discard.pdf
    Untracked:  tmp_manual_discard1.pdf
    Untracked:  tmp_manual_discard_all.pdf
    Untracked:  tmp_manual_discard_all1.pdf

Unstaged changes:
    Modified:   analysis/_site.yml

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/05-annotation.Rmd) and HTML (docs/05-annotation.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 06330b1 khembach 2020-06-22 Build site.
Rmd f349423 khembach 2020-06-21 regress out number of UMIs and perc mitochondrial features; cyclone
html 4e52d16 khembach 2020-06-15 Build site.
Rmd 47f9578 khembach 2020-06-15 fix tabset
html d04635a khembach 2020-06-12 Build site.
Rmd f376d76 khembach 2020-06-12 add barplot with sample fraction to heatmap
html 34b86b8 khembach 2020-06-12 Build site.
Rmd 38c33d8 khembach 2020-06-12 do not print marker ids
html 98d3f0d khembach 2020-06-12 Build site.
Rmd a8f31cd khembach 2020-06-12 analyze known marker genes
html f116d0f khembach 2020-06-10 Build site.
Rmd b6767a6 khembach 2020-06-10 wflow_publish(“analysis/05-annotation.Rmd”, verbose = TRUE)
html 419ac73 khembach 2020-06-09 Build site.
html a4d0e04 khembach 2020-05-29 Build site.
Rmd 97d5a52 khembach 2020-05-29 cluster analysis

Load packages

library(ComplexHeatmap)
library(cowplot)
library(ggplot2)
library(dplyr)
library(muscat)
library(purrr)
library(RColorBrewer)
library(viridis)
library(scran)
library(Seurat)
library(SingleCellExperiment)
library(stringr)
library(RCurl)
library(BiocParallel)

Load data & convert to SCE

so <- readRDS(file.path("output", "so_04_clustering.rds"))
sce <- as.SingleCellExperiment(so, assay = "RNA")
colData(sce) <- as.data.frame(colData(sce)) %>% 
    mutate_if(is.character, as.factor) %>% 
    DataFrame(row.names = colnames(sce))

Number of clusters by resolution

cluster_cols <- grep("res.[0-9]", colnames(colData(sce)), value = TRUE)
sapply(colData(sce)[cluster_cols], nlevels)
integrated_snn_res.0.1 integrated_snn_res.0.2 integrated_snn_res.0.4 
                     9                     10                     17 
integrated_snn_res.0.8   integrated_snn_res.1 integrated_snn_res.1.2 
                    23                     28                     30 
  integrated_snn_res.2 
                    35 

Cluster-sample counts

# set cluster IDs to resolution 0.4 clustering
so <- SetIdent(so, value = "integrated_snn_res.0.4")
so@meta.data$cluster_id <- Idents(so)
sce$cluster_id <- Idents(so)
(n_cells <- table(sce$cluster_id, sce$sample_id))
    
     1NSC 2NSC 3NC52 4NC52 5NC96 6NC96
  0  5184 5397   238   107   152   116
  1     0    1  1602  1312   447   576
  2  1430 1273    69    55    18    11
  3   753  727   301   279   340   363
  4     4    5   653   676   500   770
  5     1    1   970   870   265   374
  6     0    0   979   818   256   414
  7     0    0   912   781   270   369
  8   159  149   541   578   235   286
  9     0    0   793   613   209   255
  10  426  474   117   108    94   121
  11  243  237   203   261   178   206
  12    3    2   400   270   236   265
  13    0    1   395   277   127   176
  14   12    9   315   251   137   191
  15   32   45   150   138    40    83
  16   84   87    49    44    34    19

Relative cluster-abundances

fqs <- prop.table(n_cells, margin = 2)
mat <- as.matrix(unclass(fqs))
Heatmap(mat,
    col = rev(brewer.pal(11, "RdGy")[-6]),
    name = "Frequency",
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    row_names_side = "left",
    row_title = "cluster_id",
    column_title = "sample_id",
    column_title_side = "bottom",
    rect_gp = gpar(col = "white"),
    cell_fun = function(i, j, x, y, width, height, fill)
        grid.text(round(mat[j, i] * 100, 2), x = x, y = y, 
            gp = gpar(col = "white", fontsize = 8)))

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12
f116d0f khembach 2020-06-10
419ac73 khembach 2020-06-09
a4d0e04 khembach 2020-05-29

Cell cycle scoring with Seurat

We assign each cell a cell cycle scores and visualize them in the DR plots. We use known G2/M and S phase markers that come with the Seurat package. The markers are anticorrelated and cells that to not express the markers should be in G1 phase.

We compute cell cycle phase:

DefaultAssay(so) <- "RNA"
# A list of cell cycle markers, from Tirosh et al, 2015
cc_file <- getURL("https://raw.githubusercontent.com/hbc/tinyatlas/master/cell_cycle/Homo_sapiens.csv") 
cc_genes <- read.csv(text = cc_file)
# match the marker genes to the features
m <- match(cc_genes$geneID[cc_genes$phase == "S"], 
           str_split(rownames(GetAssayData(so)),
                     pattern = "\\.", simplify = TRUE)[,1])
s_genes <- rownames(GetAssayData(so))[m]
(s_genes <- s_genes[!is.na(s_genes)])
 [1] "ENSG00000012963.UBR7"     "ENSG00000049541.RFC2"    
 [3] "ENSG00000051180.RAD51"    "ENSG00000073111.MCM2"    
 [5] "ENSG00000075131.TIPIN"    "ENSG00000076003.MCM6"    
 [7] "ENSG00000076248.UNG"      "ENSG00000077514.POLD3"   
 [9] "ENSG00000092470.WDR76"    "ENSG00000092853.CLSPN"   
[11] "ENSG00000093009.CDC45"    "ENSG00000094804.CDC6"    
[13] "ENSG00000095002.MSH2"     "ENSG00000100297.MCM5"    
[15] "ENSG00000101868.POLA1"    "ENSG00000104738.MCM4"    
[17] "ENSG00000111247.RAD51AP1" "ENSG00000112312.GMNN"    
[19] "ENSG00000117748.RPA2"     "ENSG00000118412.CASP8AP2"
[21] "ENSG00000119969.HELLS"    "ENSG00000129173.E2F8"    
[23] "ENSG00000131153.GINS2"    "ENSG00000132646.PCNA"    
[25] "ENSG00000132780.NASP"     "ENSG00000136492.BRIP1"   
[27] "ENSG00000136982.DSCC1"    "ENSG00000143476.DTL"     
[29] "ENSG00000144354.CDCA7"    "ENSG00000151725.CENPU"   
[31] "ENSG00000156802.ATAD2"    "ENSG00000159259.CHAF1B"  
[33] "ENSG00000162607.USP1"     "ENSG00000163950.SLBP"    
[35] "ENSG00000167325.RRM1"     "ENSG00000168496.FEN1"    
[37] "ENSG00000171848.RRM2"     "ENSG00000174371.EXO1"    
[39] "ENSG00000175305.CCNE2"    "ENSG00000176890.TYMS"    
[41] "ENSG00000197299.BLM"      "ENSG00000198056.PRIM1"   
[43] "ENSG00000276043.UHRF1"   
m <- match(cc_genes$geneID[cc_genes$phase == "G2/M"], 
           str_split(rownames(GetAssayData(so)), 
                     pattern = "\\.", simplify = TRUE)[,1])
g2m_genes <- rownames(GetAssayData(so))[m]
(g2m_genes <- g2m_genes[!is.na(g2m_genes)])
 [1] "ENSG00000010292.NCAPD2"  "ENSG00000011426.ANLN"   
 [3] "ENSG00000013810.TACC3"   "ENSG00000072571.HMMR"   
 [5] "ENSG00000075218.GTSE1"   "ENSG00000080986.NDC80"  
 [7] "ENSG00000087586.AURKA"   "ENSG00000088325.TPX2"   
 [9] "ENSG00000089685.BIRC5"   "ENSG00000092140.G2E3"   
[11] "ENSG00000094916.CBX5"    "ENSG00000100401.RANGAP1"
[13] "ENSG00000102974.CTCF"    "ENSG00000111665.CDCA3"  
[15] "ENSG00000112742.TTK"     "ENSG00000113810.SMC4"   
[17] "ENSG00000114346.ECT2"    "ENSG00000115163.CENPA"  
[19] "ENSG00000117399.CDC20"   "ENSG00000117650.NEK2"   
[21] "ENSG00000117724.CENPF"   "ENSG00000120802.TMPO"   
[23] "ENSG00000123485.HJURP"   "ENSG00000123975.CKS2"   
[25] "ENSG00000126787.DLGAP5"  "ENSG00000129195.PIMREG" 
[27] "ENSG00000131747.TOP2A"   "ENSG00000134222.PSRC1"  
[29] "ENSG00000134690.CDCA8"   "ENSG00000136108.CKAP2"  
[31] "ENSG00000137804.NUSAP1"  "ENSG00000137807.KIF23"  
[33] "ENSG00000138160.KIF11"   "ENSG00000138182.KIF20B" 
[35] "ENSG00000138778.CENPE"   "ENSG00000139354.GAS2L3" 
[37] "ENSG00000142945.KIF2C"   "ENSG00000143228.NUF2"   
[39] "ENSG00000143401.ANP32E"  "ENSG00000143815.LBR"    
[41] "ENSG00000148773.MKI67"   "ENSG00000157456.CCNB2"  
[43] "ENSG00000158402.CDC25C"  "ENSG00000164104.HMGB2"  
[45] "ENSG00000169607.CKAP2L"  "ENSG00000169679.BUB1"   
[47] "ENSG00000170312.CDK1"    "ENSG00000173207.CKS1B"  
[49] "ENSG00000175063.UBE2C"   "ENSG00000175216.CKAP5"  
[51] "ENSG00000178999.AURKB"   "ENSG00000184661.CDCA2"  
[53] "ENSG00000188229.TUBB4B"  "ENSG00000189159.JPT1"   
so <- CellCycleScoring(so, s.features = s_genes, g2m.features = g2m_genes,
                       set.ident = TRUE)
DefaultAssay(so) <- "integrated"

DR colored by cluster ID

cs <- sample(colnames(so), 5e3)
.plot_dr <- function(so, dr, id)
    DimPlot(so, cells = cs, group.by = id, reduction = dr, pt.size = 0.4) +
        guides(col = guide_legend(nrow = 11, 
            override.aes = list(size = 3, alpha = 1))) +
        theme_void() + theme(aspect.ratio = 1)
ids <- c("cluster_id", "group_id", "sample_id", "Phase")
for (id in ids) {
    cat("## ", id, "\n")
    p1 <- .plot_dr(so, "tsne", id)
    lgd <- get_legend(p1)
    p1 <- p1 + theme(legend.position = "none")
    p2 <- .plot_dr(so, "umap", id) + theme(legend.position = "none")
    ps <- plot_grid(plotlist = list(p1, p2), nrow = 1)
    p <- plot_grid(ps, lgd, nrow = 1, rel_widths = c(1, 0.2))
    print(p)
    cat("\n\n")
}

cluster_id

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12
f116d0f khembach 2020-06-10
419ac73 khembach 2020-06-09
a4d0e04 khembach 2020-05-29

group_id

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12
f116d0f khembach 2020-06-10
419ac73 khembach 2020-06-09
a4d0e04 khembach 2020-05-29

sample_id

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12
f116d0f khembach 2020-06-10
419ac73 khembach 2020-06-09
a4d0e04 khembach 2020-05-29

Phase

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12
f116d0f khembach 2020-06-10

Find markers using scran

We identify candidate marker genes for each cluster that enable a separation of that group from all other groups.

scran_markers <- findMarkers(sce, 
    groups = sce$cluster_id, block = sce$sample_id, 
    direction = "up", lfc = 2, full.stats = TRUE)

Heatmap of mean marker-exprs. by cluster

We aggregate the cells to pseudobulks and plot the average expression of the condidate marker genes in each of the clusters.

gs <- lapply(scran_markers, function(u) rownames(u)[u$Top == 1])
## candidate cluster markers
lapply(gs, function(x) str_split(x, pattern = "\\.", simplify = TRUE)[,2])
$`0`
[1] "SAMD11" "IGFBP5" "PTN"    "NEFL"   "VIM"    "CKB"    "TTYH1" 

$`1`
[1] "SAMD11" "STMN2"  "CRABP1" "ZFHX3"  "HOXB8"  "MT-CO2"

$`2`
[1] "CENPF" "HMGB2" "VIM"   "CKB"   "TOP2A"

$`3`
[1] "S100A10" "S100A11" "CLU"     "VIM"     "CKB"     "METRN"  

$`4`
[1] "C1orf61" "VCAN"    "VIM"     "GFAP"    "HOXB9"   "TTYH1"   "MT-ND4" 

$`5`
[1] "SAMD11"  "STMN2"   "HOXB8"   "HOXB9"   "MT-RNR2"

$`6`
[1] "STMN2"  "RTN1"   "MEIS2"  "HOXB9"  "PCP4"   "MT-ND3"

$`7`
[1] "FOXP1" "FABP7" "STMN2" "PCP4" 

$`8`
[1] "PTPRZ1" "CLU"    "LY6H"   "VIM"    "TAGLN"  "DLK1"   "METRN" 

$`9`
[1] "TAC1"   "STMN2"  "HOXB5"  "MT-CO2"

$`10`
[1] "PTN"      "EIF4EBP1" "VIM"      "CKB"      "FTL"     

$`11`
[1] "VGF"      "STMN2"    "ANXA1"    "DDIT3"    "HSP90AA1"

$`12`
[1] "POU3F1"  "STMN2"   "SNCG"    "RTN1"    "HOXB5"   "ONECUT2"

$`13`
[1] "STMN2"  "SNCG"   "MPPED2" "RTN1"   "PCP4"  

$`14`
[1] "TAC1"  "STMN2"

$`15`
[1] "C1orf61" "HES6"    "SOX2"    "VIM"     "CKB"    

$`16`
[1] "S100A11" "COL3A1"  "COL1A1" 
sub <- sce[unique(unlist(gs)), ]
pbs <- aggregateData(sub, assay = "logcounts", by = "cluster_id", fun = "mean")
mat <- t(muscat:::.scale(assay(pbs)))
## remove the Ensembl ID from the gene names
colnames(mat) <- str_split(colnames(mat), pattern = "\\.", simplify = TRUE)[,2] 
Heatmap(mat,
    name = "scaled avg.\nexpression",
    col = viridis(10),
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    row_names_side = "left",
    row_title = "cluster_id",
    rect_gp = gpar(col = "white"))

Version Author Date
06330b1 khembach 2020-06-22
f116d0f khembach 2020-06-10

Known marker genes

## source file with list of known marker genes
source(file.path("data", "known_cell_type_markers.R"))

fs <- lapply(fs, sapply, function(g)
    grep(pattern = paste0("\\.", g, "$"), rownames(sce), value = TRUE)
  )

fs <- lapply(fs, function(x) unlist(x[lengths(x) !=0]) )

gs <- gsub(".*\\.", "", unlist(fs))
ns <- vapply(fs, length, numeric(1))
ks <- rep.int(names(fs), ns)
labs <- lapply(fs, function(x) gsub(".*\\.", "",x))

Heatmap of mean marker-exprs. by cluster

# split cells by cluster
cs_by_k <- split(colnames(sce), sce$cluster_id)
# compute cluster-marker means
ms_by_cluster <- lapply(fs, function(gs) vapply(cs_by_k, function(i)
        Matrix::rowMeans(logcounts(sce)[gs, i, drop = FALSE]), 
        numeric(length(gs))))
# prep. for plotting & scale b/w 0 and 1
mat <- do.call("rbind", ms_by_cluster)
mat <- muscat:::.scale(mat)
rownames(mat) <- gs
cols <- muscat:::.cluster_colors[seq_along(fs)]
cols <- setNames(cols, names(fs))
row_anno <- rowAnnotation(
    df = data.frame(label = factor(ks, levels = names(fs))),
    col = list(label = cols), gp = gpar(col = "white"))
# percentage of cells from each of the samples per cluster
sample_props <- prop.table(n_cells, margin = 1)
col_mat <- as.matrix(unclass(sample_props))
sample_cols <- c("#882255", "#CC6677", "#11588A", "#88CCEE", "#117733", "#44AA99")
sample_cols <- setNames(sample_cols, colnames(col_mat))
col_anno <- HeatmapAnnotation(
    perc_sample = anno_barplot(col_mat, gp = gpar(fill = sample_cols), 
                               height = unit(2, "cm"),
                               border = FALSE),
    annotation_label = "fraction of sample\nin cluster",
    gap = unit(10, "points"))
col_lgd <- Legend(labels = names(sample_cols),
       title = "sample",
       legend_gp = gpar(fill = sample_cols))

hm <- Heatmap(mat,
    name = "scaled avg.\nexpression",
    col = viridis(10),
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    row_names_side = "left",
    column_title = "cluster_id",
    column_title_side = "bottom",
    column_names_side = "bottom",
    column_names_rot = 0, 
    column_names_centered = TRUE,
    rect_gp = gpar(col = "white"),
    left_annotation = row_anno,
    top_annotation = col_anno)
draw(hm, annotation_legend_list = list(col_lgd))

Version Author Date
06330b1 khembach 2020-06-22
d04635a khembach 2020-06-12
98d3f0d khembach 2020-06-12

DR colored by marker expression

# downsample to 5000 cells
cs <- sample(colnames(sce), 5e3)
sub <- subset(so, cells = cs)
# UMAPs colored by marker-expression
for (m in seq_along(fs)) {
    cat("## ", names(fs)[m], "\n")
    ps <- lapply(seq_along(fs[[m]]), function(i) {
        if (!fs[[m]][i] %in% rownames(so)) return(NULL)
        FeaturePlot(sub, features = fs[[m]][i], reduction = "umap", pt.size = 0.4) +
            theme(aspect.ratio = 1, legend.position = "none") +
            ggtitle(labs[[m]][i]) + theme_void() + theme(aspect.ratio = 1)
    })
    # arrange plots in grid
    ps <- ps[!vapply(ps, is.null, logical(1))]
    p <- plot_grid(plotlist = ps, ncol = 4, label_size = 10)
    print(p)
    cat("\n\n")
}

NSC

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12

proliferating

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12

neuronal

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12

mature_astrocytes

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12

glial_astrocytic

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12

radial_glia

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12

oligodendrocyte

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12

GABAergic_neurons

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12

glycinergic_neurons

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12

glutaminergic_neurons

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12

dopaminergic_neurons

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12

apoptotic

Version Author Date
06330b1 khembach 2020-06-22
98d3f0d khembach 2020-06-12

Cluster annotation

Based on the plots we annotated the clusters: …


sessionInfo()
R version 4.0.0 (2020-04-24)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.6 LTS

Matrix products: default
BLAS:   /usr/local/R/R-4.0.0/lib/libRblas.so
LAPACK: /usr/local/R/R-4.0.0/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] parallel  stats4    grid      stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] BiocParallel_1.22.0         RCurl_1.98-1.2             
 [3] stringr_1.4.0               Seurat_3.1.5               
 [5] scran_1.16.0                SingleCellExperiment_1.10.1
 [7] SummarizedExperiment_1.18.1 DelayedArray_0.14.0        
 [9] matrixStats_0.56.0          Biobase_2.48.0             
[11] GenomicRanges_1.40.0        GenomeInfoDb_1.24.0        
[13] IRanges_2.22.2              S4Vectors_0.26.1           
[15] BiocGenerics_0.34.0         viridis_0.5.1              
[17] viridisLite_0.3.0           RColorBrewer_1.1-2         
[19] purrr_0.3.4                 muscat_1.2.0               
[21] dplyr_0.8.5                 ggplot2_3.3.0              
[23] cowplot_1.0.0               ComplexHeatmap_2.4.2       
[25] workflowr_1.6.2            

loaded via a namespace (and not attached):
  [1] backports_1.1.7           circlize_0.4.9           
  [3] blme_1.0-4                igraph_1.2.5             
  [5] plyr_1.8.6                lazyeval_0.2.2           
  [7] TMB_1.7.16                splines_4.0.0            
  [9] listenv_0.8.0             scater_1.16.0            
 [11] digest_0.6.25             foreach_1.5.0            
 [13] htmltools_0.4.0           gdata_2.18.0             
 [15] lmerTest_3.1-2            magrittr_1.5             
 [17] memoise_1.1.0             cluster_2.1.0            
 [19] doParallel_1.0.15         ROCR_1.0-11              
 [21] limma_3.44.1              globals_0.12.5           
 [23] annotate_1.66.0           prettyunits_1.1.1        
 [25] colorspace_1.4-1          rappdirs_0.3.1           
 [27] ggrepel_0.8.2             blob_1.2.1               
 [29] xfun_0.14                 jsonlite_1.6.1           
 [31] crayon_1.3.4              genefilter_1.70.0        
 [33] lme4_1.1-23               zoo_1.8-8                
 [35] ape_5.3                   survival_3.1-12          
 [37] iterators_1.0.12          glue_1.4.1               
 [39] gtable_0.3.0              zlibbioc_1.34.0          
 [41] XVector_0.28.0            leiden_0.3.3             
 [43] GetoptLong_0.1.8          BiocSingular_1.4.0       
 [45] future.apply_1.5.0        shape_1.4.4              
 [47] scales_1.1.1              DBI_1.1.0                
 [49] edgeR_3.30.0              Rcpp_1.0.4.6             
 [51] xtable_1.8-4              progress_1.2.2           
 [53] clue_0.3-57               reticulate_1.16          
 [55] dqrng_0.2.1               bit_1.1-15.2             
 [57] rsvd_1.0.3                tsne_0.1-3               
 [59] htmlwidgets_1.5.1         httr_1.4.1               
 [61] gplots_3.0.3              ellipsis_0.3.1           
 [63] ica_1.0-2                 farver_2.0.3             
 [65] pkgconfig_2.0.3           XML_3.99-0.3             
 [67] uwot_0.1.8                locfit_1.5-9.4           
 [69] labeling_0.3              tidyselect_1.1.0         
 [71] rlang_0.4.6               reshape2_1.4.4           
 [73] later_1.0.0               AnnotationDbi_1.50.0     
 [75] munsell_0.5.0             tools_4.0.0              
 [77] RSQLite_2.2.0             ggridges_0.5.2           
 [79] evaluate_0.14             yaml_2.2.1               
 [81] knitr_1.28                bit64_0.9-7              
 [83] fs_1.4.1                  fitdistrplus_1.1-1       
 [85] caTools_1.18.0            RANN_2.6.1               
 [87] pbapply_1.4-2             future_1.17.0            
 [89] nlme_3.1-148              whisker_0.4              
 [91] pbkrtest_0.4-8.6          compiler_4.0.0           
 [93] plotly_4.9.2.1            beeswarm_0.2.3           
 [95] png_0.1-7                 variancePartition_1.18.0 
 [97] tibble_3.0.1              statmod_1.4.34           
 [99] geneplotter_1.66.0        stringi_1.4.6            
[101] lattice_0.20-41           Matrix_1.2-18            
[103] nloptr_1.2.2.1            vctrs_0.3.0              
[105] pillar_1.4.4              lifecycle_0.2.0          
[107] lmtest_0.9-37             GlobalOptions_0.1.1      
[109] RcppAnnoy_0.0.16          BiocNeighbors_1.6.0      
[111] data.table_1.12.8         bitops_1.0-6             
[113] irlba_2.3.3               patchwork_1.0.0          
[115] httpuv_1.5.2              colorRamps_2.3           
[117] R6_2.4.1                  promises_1.1.0           
[119] KernSmooth_2.23-17        gridExtra_2.3            
[121] vipor_0.4.5               codetools_0.2-16         
[123] boot_1.3-25               MASS_7.3-51.6            
[125] gtools_3.8.2              assertthat_0.2.1         
[127] DESeq2_1.28.1             rprojroot_1.3-2          
[129] rjson_0.2.20              withr_2.2.0              
[131] sctransform_0.2.1         GenomeInfoDbData_1.2.3   
[133] hms_0.5.3                 tidyr_1.1.0              
[135] glmmTMB_1.0.1             minqa_1.2.4              
[137] rmarkdown_2.1             DelayedMatrixStats_1.10.0
[139] Rtsne_0.15                git2r_0.27.1             
[141] numDeriv_2016.8-1.1       ggbeeswarm_0.6.0